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Purpose. The aim of this study was to identify the dominant factors affecting the stability of
nanoemulsions, using artificial neural networks (ANNs).
Methods. A nanoemulsion preparation of budesonide containing polysorbate 80, ethanol, medium chain
triglycerides and saline solution was designed, and the particle size of samples with various compositions,
prepared using different rates and amounts of applied ultrasonic energy, was measured 30 min and 30 days
after preparation. Using ANNs, data were modelled and assessed. The derived predictive model was
validated statistically and then used to determine the effect of different formulation and processing input
variables on particle size growth of the nanoemulsion preparation as an indicator of the preparation stability.
Results. The results indicated that the data can be satisfactorily modelled using ANNs, while showing a
high degree of complexity between the dominant factors affecting the stability of the preparation.
Conclusion. The total amount of applied energy and concentration of ethanol were found to be the
dominant factors controlling the particle size growth.

KEY WORDS: artificial neural networks; budesonide; microemulsion; nanoemulsion; particle size;
stability.

INTRODUCTION

Micro- and nanoemulsion formulations have shown
potential for the delivery of poorly water soluble drugs. Ease
of preparation, increased bioavailability and potential for
sustained release of drugs are features of these formulations
which have attracted the attention of researchers in the
pharmaceutical industries and academia (1–3). However,
literature reports have indicated a wide range of physical
stability for such preparations, with examples being physically
stable from a few days to more than 2 years (1).

A possible mechanism for the stability in micro- and
nanoemulsions was first proposed by Ruckenstein and Chi
(4). They proposed that the change in free energy of
formation of these preparations is affected by three factors:
changes in interfacial free energy, energy of interactions
between the droplets and the effect made by entropy of
dispersion. It was proposed that whilst the energy of
interactions between the droplets was negligible, the inter-
facial free energy could be zero or even negative if the
interfacial tension lies between 10-2-10-13 mN/m (4). Insta-

bility then occurs due to the Ostwald ripening effect, with
coalescence of particles leading to increase in the size of
nanoparticles and thereby destabilization of the nanodroplets
with subsequent sediment of particles (5,6).

Addition of salt and/or other formulation additives, as
well as the temperature and pressure, are factors which can
affect the physical stability of micro- and nanoemulsions (7).
The surface charge (Zeta potential) of the particles (8),
molecular structure of co-surfactant, ratio of hydrophilic to
hydrophobic components (9), ratio of co-surfactants and
surfactant(s) to co-surfactant(s) (10) and molecular structure
of the oil (11) are also reported to have a role in determining
the stability of the these formulations. However, reported work
detailing the relative importance of these factors as well as
examination of the interactions between the experimentally
measured variables has not provided a comprehensive study of
the different formulation parameters controlling the stability of
the preparation. This is thought to be due to the complexity of
the formulations and preparation processes involved.

In recent years, Artificial Neural Networks (ANNs) have
been widely used to examine complex, multivariable pro-
cesses when classical statistical techniques fail to model and/
or quantify the relationships between variables and/or out-
puts (12,13). ANNs work on the basis of linking neurons to
generate an output based on the associated weights (showing
the importance) of input(s) by computing the weighted sum
of all inputs. Usually, the neurons are identical and form a
three-layer structure input layer to take the input variables,
hidden layer(s) to compute the relation between variables
and output and an output layer to report the results (14).
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In previous work (15), we reported the relative influence
of five different formulation and processing variables on the
particle size of the nanoemulsions produced—defined here as
any emulsion particles below 100 nm (3). Total energy
applied to the preparation was found to be the most
important factor (15). The aim of this study is to use ANNs
to identify possible hidden factors which also influence the
growth of particle size in prepared nanoemulsions, thus
providing insight into the stability of such preparations.

MATERIALS AND METHODS

Materials

Medium chain triglyceride (MCT), Crodamol GTCC,
was a gift from Croda (UK). Budesonide (Pharm. Eur.) was
from Industriale Chimica s.r.l. (Italy). Pharmaceutical grade
polysorbate 80 was purchased from Fluka (Switzerland). All
other chemicals were of analytical grade and purchased from
Sigma-Aldrich (USA).

Preparation of Samples and Particle Size Measurement

Nanoemulsion samples (20 ml) containing polysorbate
80, MCT, ethanol, budesonide in saline solution were
prepared using a VCX500 probe sonicator (Sonics and
Materials, USA) following the method described previously
(15). Samples were then filtered through 0.2µm syringe filters,
and the particle size was measured 30 min after prepara-
tion using a Zetasizer Nano (Malvern, UK). The mean size
(Z-average size) of five replicates at 25°C based on Photon
Correlation Spectroscopy (PCS) was taken as the particle size.
No dilution was performed on the samples prior to measure-
ment. Dispersant viscosity was set as 0.8872cP at 25°C (15).

Samples were then stored in sealed, sterile cylindrical
containers with the internal diameter of 2.3 cm at 30°C, and a
second measurement was performed after 30 days storage. The
ratio of growth (i.e. particle size after 30 days

particle size after 30 minutes ) was considered as an
indication of the physical stability of the various samples.

Data Mining Tool

INForm v3.5 (Intelligensys, UK), a commercial ANN
employed in this study, was used to model the non-linear and
complex relations between inputs and outputs. Results from
these analyses are illustrated as 3D graphs, rather than
statistical models, which can be used to characterise inter-
actions between inputs and output.

Data Set

Using INForm v3.5, the available data are often ran-
domly divided into three sets: the training set, test set and
validation set. In this case, the network is trained by the
training data set, the test set is used to stop the learning
process and the ability of trained network is assessed using a
set of unseen data (validation data) (16).

The preparation process for the nanoemulsion involved
seven ingredients/processing conditions variables for each
experiment: percentage of polysorbate 80 (weight %),
ethanol (weight %) and oil (weight %), budesonide dissolved

in 20 ml of the preparation (mg/20 ml), saline normality (N),
total energy applied (J) and rate of energy applied (RAE) (J/
min) to the preparation. As described previously (15), the
percentages of polysorbate 80 and oil were fixed at 10%
(weight %) and 1% (weight %), respectively, to represent the
realistic situation while formulating nanoemulsions for phar-
maceutical purposes. As a result, five input variables were
considered in the training stage of data mining and varied
randomly in each experiment. The particle size growth ratio
obtained was the single output.

The growth in particle size of 35 samples (each of 20 ml
final volume in sealed containers), all having a fixed ratio of
surfactant/oil (10:1), was investigated over 30 days for
samples stored at 30°C. The particle size growth ratio was
calculated with the most physically stable preparation
expected to have the closest particle growth ratio to unity.

To prevent computer-based overtraining during the
training stage, two approaches were employed. The max-
imum number of iterations was set to 1000 (i.e. the default
value). Furthermore, three individual data records (i.e. 10%
of the data set as recommended by the software) was
randomly taken out of the training process as test data and
used to avoid overtraining (i.e. “test data”). If the network is
becoming overtrained, the correlation coefficient obtained for
the test data starts (see Eq. 1) to decrease and the training
process stops. Therefore, 32 of the individual sets of
experimental results were used as “training data” to set up
the cause-effect relationships between the inputs and the
output. Additionally, 14 supplementary experiments were
performed, and the results were excluded from training to be
used as unseen or “validation data.” Subsequent to training,
the validation data were employed to evaluate the predictive
ability and quality of the generated model. Tables I and II list
the values of input variables that were prepared and
subsequently examined.

Training Parameters

Details of learning algorithms and training parameters
interrogated to optimise the network structure have been
described previously (16,17). Subsequent to training the
network, using the parameters listed in Table III, the
predicted value of particle growth ratios was determined
from the derived model, and the quality of training and the
predictability of the models were validated using the corre-
lation coefficient R-square (R2) for training, test and
validation data.

R2 ¼ 1�
Pn

i¼1 yi � ŷi
� �2

Pn
i¼1 yi � yið Þ2 ð1Þ

where y is the mean of dependent variable, and ŷ is the
predicted value from the model. A quality ANN model should
have an acceptable R2 for all training, test and validation data.

RESULTS AND DISCUSSION

After modelling the data using the ANN, the best
predictive model resulted in R2 values of 0.95, 0.89 and 0.82
for the training, test and validation data, respectively. These
values indicate a good-quality trained model. The observed
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and predicted particle growth ratios for the training, test and
validation data are listed in Tables IV, V and VI, respectively,
and Fig. 1 shows a plot of predicted and observed
nanoemulsion particle size growth ratio for the 14 individual
sets of validation experimental data.

This generated model was then employed to study the
effects of the different input variables on the particle size
growth of the nanoemulsions.

The results obtained revealed a high degree of complex-
ity when attempting to identify the dominating factors
controlling the increase in nanoemulsion particle size when
compared to the analysis of the influence of input parameters
on the initial particle size (15). While a sensitivity analysis
approach can be used to provide ranking of input variables, in
this study a systematic approach was followed. Briefly, this
approach involves investigating the effect of variation of two
specific input variables on the output, visualized by 3D graphs
generated by the model, while the remaining input variables

are fixed at three specific value—namely a low, mid-range
and high value (15,18). In following this method, the results
were divided into three groups: zero, medium, and high
concentration of budesonide. For each of these three groups,
3D plots of total energy-ethanol-size growth at a mid-range
value of saline and RAE were considered. Each plot was also
accompanied by four additional complementary plots to
illustrate the effect of low and high values of saline and
RAE on the particle size growth.

Zero Concentration of Budesonide in the Formulation

Figure 2a shows 3D plots of size-growth ratio against
concentration of ethanol and the total applied energy at mid-
range values of saline concentration and RAE. This figure is
accompanied by four additional plots (Fig. 2b–e) of high and
low values of saline and RAE. Employing this method, the
obtained model can be “visualized” using generated 3D

Table I. Formulation and processing conditions (i.e. the test and training data set, used in ANNs modelling, last three individual experiments
represent the “test data”)

Input parameters Output parameter

Sample
no.

Ethanol
(weight %)

Budesonide
(mg/20 ml)

Total energy
applied (J) Saline (N) RAE (J/min)

Particle size
(30 min) (nm)

Particle size
(30 days) (nm)

Particle growth
ratio

1 1.1 30.0 3540 0.6 1295 10.8 13.0 1.2
2 1.8 20.6 2000 0.4 1714 16.9 82.8 4.9
3 1.0 10.1 2900 1 635 17.3 55.4 3.2
4 1.7 21.9 2650 1.1 1626 18.5 44.4 2.4
5 1.9 23.3 1700 1.8 911 18.0 45.0 2.5
6 1.0 30.0 2050 0.6 665 23.8 47.6 2.0
7 2.0 30.0 2050 0.6 661 24.7 101.3 4.1
8 2.0 0.0 2050 0.6 661 18.7 56.1 3.0
9 2.0 29.8 2050 0.6 647 22.1 44.2 2.0
10 1.1 30.0 3540 0.6 1249 11.3 13.6 1.2
11 1.3 28.6 2050 0.3 1255 19.2 84.5 4.4
12 1.0 29.8 3000 0.6 1241 11.5 15.0 1.3
13 1.0 30.1 3000 0.6 1935 44.0 74.8 1.7
14 1.0 29.8 3000 0.6 1364 16.2 24.3 1.5
15 1.0 30.0 3000 0.6 1241 11.5 23.0 2.0
16 1.0 30.0 3000 0.6 1268 14.7 20.6 1.4
17 3.0 25.4 6590 0.8 665 11.3 13.6 1.2
18 2.3 26.8 5045 0.5 1125 11.4 18.2 1.6
19 2.8 20.4 2250 0.4 912 19.6 131.3 6.7
20 2.4 22.5 650 1.2 1054 15.0 39.0 2.6
21 2.1 28.0 4560 1.2 837 11.7 12.9 1.1
22 2.6 28.7 1790 0.3 1513 24.8 119.0 4.8
23 2.2 29.9 2840 0.9 658 19.5 29.3 1.5
24 1.6 23.9 3850 0.5 1582 11.6 13.9 1.2
25 2.0 20.4 1315 0.7 1384 18.6 35.3 1.9
26 1.1 16.0 4417 0.8 1031 11.0 12.1 1.1
27 2.6 28.1 5735 0.9 1955 12.1 16.9 1.4
28 1.5 17.1 2743 0.3 735 22.0 46.2 2.1
29 2.6 13.0 2415 0.3 805 22.8 177.8 7.8
30 2.0 20.9 1450 1.0 1279 21.4 79.2 3.7
31 1.6 22.3 4340 0.8 1033 11.7 12.9 1.1
32 2.0 25.5 5540 a 906 11.1 32.2 2.9
33 2.4 19.1 2500 0.4 1014 22.8 187.0 8.2
34 1.0 30.0 5300 0.5 967 11.1 12.2 1.1
35 1.0 23.3 1089 1.4 895 16.2 27.5 1.7

a missing data
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graphs, leading to easier interpretation of the results as
explained previously (15,18). By comparing the series of 3D
plots, the rules describing the relationships between input and
output parameters can be identified.

From Fig. 2, the plots demonstrate that particle size
growth is minimal at the highest values of total applied energy
and lowest percentages of ethanol (see the region represented
by Number 1 in Fig. 2a–e). Also, on increasing the salinity of
dispersant, the overall growth decreases (i.e. the plots
representing low vs. high values of saline in Fig. 2b and c vs.
Fig. 2e and d). The peak in particle growth ratio, observed in
the region of 2500 J applied energy (see the line represented
by Number 2 in Fig. 2a–e) is an interesting factor. This peak
appears to represent a transitional state (TS) in which the
growth ratio increases. This maximum could be related to the
TS in particle size 3D plots previously reported (15) and is
thought to be associated with rearrangement of the compo-
nent molecules in the nanoemulsion structure.

Figure 2d and e also show that the concentration of
saline influences the stabilization of the particles, with higher
values leading to increased physical stability. This is attrib-
uted to changes in intra- and inter-particle interactions which

are modified by addition of saline ions. It is also apparent
that, in general, the RAE does not affect the particle growth
ratio (i.e. the plots representing low vs. high values of RAE in
Fig. 2b and d vs. Fig. 2c and e). The exception is at high
values of RAE where a maximum is observed at high values
of ethanol and total applied energy (see the region repre-
sented by Number 3 in Fig. 2c and e). One possible
explanation is that the degree of complexity of the mecha-
nisms controlling the physical stability of the nanoemulsion is
increasing at higher energy rates (i.e. the nanoemulsion
components restructure again at high energy rates), which
leads to a second maximum in the growth ratio in addition to
the peak in the TS region. This peak is apparent in high RAE
and low salinity values (see Fig. 2c and e). However, at high
concentration of saline (i.e. Fig. 2e), this peak has been
largely masked by the effect of the concentration of saline
which acts in favour of stabilizing the nanoemulsion particles.

Medium Concentration of Budesonide in the Formulation

The second step in interpreting the 3D graphs is to assess
the input-output relations in mid-range values of the fixed

Table II. Validation data set used to validate the generated model

Input parameters Output parameter

Sample no.
Ethanol

(weight %)
Budesonide
(mg/20 ml)

Total energy
applied (J) Saline (N)

RAE
(J/min)

Particle size
(30 min) (nm)

Particle size
(30 days) (nm)

Particle growth
ratio

36 2.0 30.0 2050 0.6 631 21.6 67.0 3.1
37 1.3 29.7 4650 1.5 1197 11.1 12.2 1.1
38 2.0 0.0 2090 0.6 643 19.4 77.6 4.0
39 1.3 29.7 4650 1.5 1368 11.1 12.2 1.1
40 1.0 30.1 3000 0.6 629 14.4 18.7 1.3
41 1.0 30.0 3000 0.6 1440 19.0 39.9 2.1
42 2.5 30.0 1050 0.3 1575 18.2 67.3 3.7
43 2.9 20.0 3150 0.6 1370 16.2 42.1 2.6
44 2.5 21.1 3610 0.6 926 11.7 17.6 1.5
45 1.5 25.2 2450 0.7 1771 20.0 38.0 1.9
46 2.3 21.5 1990 0.5 1405 20.4 100.0 4.9
47 1.5 24.5 5425 0.7 779 11.4 12.5 1.1
48 2.6 29.5 4093 1.0 1266 12.3 14.8 1.2
49 1.7 27.0 3719 0.9 1344 11.6 12.8 1.1

Table III. The training parameters set with INForm v3.5

Network structure No. of hidden layers 1
No. of nodes in hidden layer 5

Backpropagation type Angle Driven Learning
Backpropagation parameters Momentum factor 0.8

Learning rate 0.7
Targets Maximum iterations 1000

MS error 0.0001
Random seed 10000

Smart stop Minimum iterations 20
Test error weighting 0.1
Iteration overshoot 200
Auto weight On
Smart stop enabled On

Transfer function Output Asymmetric Sigmoid
Hidden layer Asymmetric Sigmoid
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input parameter. Figure 3 shows data for the nanoemulsion
preparation containing 15 mg/20 ml concentration of budeso-
nide. From the trends discussed in “Zero Concentration of
Budesonide in the Formula” (i.e. zero budesonide), three
distinct observations describe effects at medium concentra-
tions of budesonide: 1) the higher the energy and the lower the
percentage of ethanol, the smaller the size growth ratio (i.e.
Number 1 in Fig. 3a–e), 2) a TS exists in all Figures (i.e. Number
2 in Fig. 3a–e), and 3) a second maximum is observed at high
values of RAE at low concentration of saline (i.e. Number 3
in Fig. 3c).

The effect of saline on the growth (i.e. the plots
representing low vs. high values of saline in Fig. 3) shows a
complex pattern in the presence of budesonide at medium
concentrations. The profiles in Fig. 3b and c compared to
Fig. 3d and e suggest that in medium concentrations of
budesonide, saline does not influence the particle size growth.
This effect will be considered later.

High Concentration of Budesonide in the Formulation

Figure 4a–e shows the 3D plots for high concentrations
of budesonide. As observed for zero and medium concen-
trations, the results indicate that the two major factors
dominating low values of growth ratio are reducing ethanol
concentration and increasing total applied energy. However,
on comparing the plots in Figs. 2, 3 and 4, it can be seen that
in the region of high concentration of ethanol and low applied
energy (i.e. absence of the two major controlling factors),
incorporation of budesonide in the nanoemulsion particles
counteracts the effect of saline. For systems without budeso-

Table IV. The observed and predicted particle growth ratio for
training data

Sample no.
Observed particle
growth ratioa

Predicted particle
growth ratiob

1 1.2 1.1
2 4.9 4.8
3 3.2 2.9
4 2.4 2.7
5 2.5 2.5
6 2.0 2.1
7 4.1 3.2
8 3.0 3.0
9 2.0 2.9
10 1.2 1.1
11 4.4 4.4
12 1.3 1.4
13 1.7 1.8
14 1.5 1.4
15 2.0 1.3
16 1.4 1.3
17 1.2 1.2
18 1.6 1.6
19 6.7 6.6
20 2.6 3.0
21 1.1 1.1
22 4.8 4.8
23 1.5 1.7
24 1.2 1.3
25 1.9 2.5
26 1.1 1.1
27 1.4 1.4
28 2.1 2.3
29 7.8 7.7
30 3.7 2.6
31 1.1 1.1

a The particle size growth ratio calculated in Table I
b The predicted particle size growth ratio, using ANNs modelling

Table V. The observed and predicted growth ratio for test data

Sample no.
Observed particle
growth ratioa

Predicted particle
growth ratiob

32 8.2 6.47
33 1.1 1.21
34 1.7 1.08

a The particle size growth ratio calculated in Table I
b The predicted particle size growth ratio, using ANNs modelling

Table VI. The observed and predicted growth for validation data

Sample no.
Observed particle
growth ratioa

Predicted particle
growth ratiob

36 3.1 2.8
37 1.1 1.1
38 4.0 3.1
39 1.1 1.1
40 1.3 1.9
41 2.1 1.4
42 3.7 3.7
43 2.6 1.8
44 1.5 1.4
45 1.9 2.9
46 4.9 4.5
47 1.1 1.3
48 1.2 1.3
49 1.1 1.1

a The particle size growth ratio calculated in Table II
b The predicted particle size growth ratio, using ANNs modelling

Ideal line
y = x

Observed trend line
y = 1.0524x - 0.0172
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Fig. 1. Validation agreement plot of ANN for validation data for
particle size growth.
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nide (i.e. Fig. 2), it was observed that addition of saline led to
increased stability, whilst on increasing the concentration of
saline in budesonide-loaded nanoemulsion particles (i.e.
Fig. 3d and e vs Fig. 3b and c as well as Fig. 4d and e vs
Fig. 4b and c), the size growth did not decrease and even
increased in high concentrations of budesonide. This obser-
vation is thought to be due to the fact that budesonide is
accommodated in the core of the nanoemulsion particles,
which leads to changes in the intra-particle interactions in
favour of hydrophobic forces (15). At high concentration of

ethanol and low applied energy values, saline ions stabilize
the nanoemulsion particles through hydrophilic inter- and
intra-particular interactions, which are counteracted by the
budesonide molecules, and thus, the increase in concentration
of saline does not lead to an overall increase in the stability of
the preparation in the presence of the budesonide molecules.
The second peak in growth ratio generated due to increasing
the RAE in low saline concentrations is also observed in
Fig. 4c, although was more pronounced in Figs. 2c and 3c (see
Number 3 in Fig. 4c). As discussed earlier, this phenomenon

a

b c

d e

RAE Saline  RAE Saline  

Low Low High Low

Low High High High

Fig. 2. a 3D plot of particle size growth predicted by the ANN model for total applied energy and ethanol concentration at
fixed mid-range values of 1.0 (N) and 1200 (J/min) for saline and RAE, respectively, at zero budesonide in the preparation.
b–e Four complimentary plots representing high and low values for concentration of saline and RAE inputs at zero
budesonide in the preparation. The values for fixed input factors in small plots are saline 0.6 and 1.4 (N) and RAE 915.0 and
1486.0 (J/min), where applicable.
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could be associated with formation of intra-particle interac-
tion in high concentrations of budesonide.

From the above analyses, the following general rules can
be identified for preparing a stable nanoemulsion with
minimal particle size growth containing budesonide:

1. Effect of total applied energy: by increasing the total
applied energy, the physical stability of the formula-
tion increases. A minimum amount of applied energy
(approximately 4500 J for 20 ml preparation) is
required for nanoemulsion components (i.e. oil,
surfactant and co-surfactant) to be organized into a

construct that generates the most stable particle. Also,
it is interesting to note that in all 3D figures illustrated
in Figs. 2, 3 and 4, a peak at 2500 J applied energy (i.e.
medium amounts of energy) is frequently observed
which is attributed to a transient displacement of
components (i.e. TS).

2. Effect of ethanol percentage: by decreasing the
percentage of ethanol from 3% to 1% (w/w) (i.e. from
maximum to minimum), the nanoemulsion exhibits
greater physical stability. This finding indicates that
only a minimum amount of co-surfactant is necessary
for the formation and stabilization of the nanoemulsion

 

RAE Saline  RAE Saline  

Low Low High Low

Low High High High

a

b c

d e

Fig. 3. a 3D plot of particle size growth predicted by the ANN model for total applied energy and ethanol concentration at
fixed mid-range values of 1.0 (N) and 1200 (J/min) for saline and RAE, respectively, at medium budesonide in the
preparation (i.e. 15 mg/20 ml). b–e Four complimentary plots representing high and low values for concentration of saline
and RAE inputs at medium budesonide in the preparation (i.e. 15 mg/20 ml). The values for fixed input factors in small plots
are saline 0.6 and 1.4 (N) and RAE 915.0 and 1486.0 (J/min), where applicable.
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and the additional amounts of co-surfactant may
interact unfavourably with other components of the
nanoemulsion leading to reduced physical stability.

3. Effect of saline: saline appears to provide more physi-
cally stable nanoemulsion preparations in the absence of
the budesonide molecules. The effect of saline on the
stability can be explained through changes in intra- and,
more specifically, inter-particle interactions.

4. Effect of applied energy rate: high energy rates
generally led to the generation of a second peak in

the size growth ratio at low levels of saline. This effect
is attributed to another rearrangement in the location
of the nanoemulsion components.

CONCLUSIONS

The work reported showed the capability of ANNs to
identify the primary factors controlling particle size growth in
nanoemulsions. From the 3D graphs developed from the model,
it was interpreted that the arrangement of the preparation

 

RAE Saline  RAE Saline  

Low Low High Low

Low High High High

a

b c

d e

Fig. 4. a 3D plot of particle size growth predicted by the ANN model for total applied energy and ethanol concentration at
fixed mid-range values of 1.0 (N) and 1200 (J/min) for saline and RAE, respectively, at high concentration of budesonide in
the preparation (i.e. 30 mg/20 ml). b–e Four complimentary plots representing high and low values for concentration of
saline and RAE inputs at high concentration of budesonide in the preparation (i.e. 30 mg/20 ml). The values for fixed input
factors in small plots are saline 0.6 and 1.4 (N) and RAE 915.0 and 1486.0 (J/min), where applicable.
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components plays the key factor in stabilizing the nanoparticles
with total applied energy and percentage of ethanol as the
critical parameters controlling particle size growth on storage.
By increasing the total applied energy to levels above 4500 J and
for concentration levels of ethanol at 1% w/w, the most
physically stable formulation was obtained. Moreover, it was
found that incorporation of budesonide counteracted the effect
of saline in stabilizing the nanoparticles.
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